Comparison of unitary displacements and forces between 2 cardiac myosin isoforms by the optical trap technique: molecular basis for cardiac adaptation.

نویسندگان

  • S Sugiura
  • N Kobayakawa
  • H Fujita
  • H Yamashita
  • S Momomura
  • S Chaen
  • M Omata
  • H Sugi
چکیده

To provide information on the mechanism of cardiac adaptation at the molecular level, we compared the unitary displacements and forces between the 2 rat cardiac myosin isoforms, V1 and V3. A fluorescently labeled actin filament, with a polystyrene bead attached, was caught by an optical trap and brought close to a glass surface sparsely coated with either of the 2 isoforms, so that the actin-myosin interaction took place in the presence of a low concentration of ATP (0.5 micromol/L). Discrete displacement events were recorded with a low trap stiffness (0.03 to 0.06 pN/nm). Frequency distribution of the amplitude of the displacements consisted of 2 gaussian curves with peaks at 9 to 10 and 18 to 20 nm for both V1 and V3, suggesting that 9 to 10 nm is the unitary displacement for both isoforms. The duration of the displacement events was longer for V3 than for V1. On the other hand, discrete force transients were recorded with a high trap stiffness (2.1 pN/nm), and their amplitude showed a broad distribution with mean values between 1 and 2 pN for V1 and V3. The durations of the force transients were also longer for V3 than for V1. These results indicate that both the unitary displacements and forces are similar in amplitude but different in duration between the 2 cardiac myosin isoforms, being consistent with the reports that the tension cost is higher in muscles consisting mainly of V1 than those consisting mainly of V3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-molecule mechanics of R403Q cardiac myosin isolated from the mouse model of familial hypertrophic cardiomyopathy.

Familial hypertrophic cardiomyopathy (FHC) is an inherited cardiac disease that can result in sudden death in the absence of any overt symptoms. Many of the cases documented to date have been linked with missense mutations in the beta-myosin heavy chain gene. Here we present data detailing the functional impact of one of the most deadly mutations, R403Q, on myosin motor function. Experiments we...

متن کامل

Functional consequences of mutations in the smooth muscle myosin heavy chain at sites implicated in familial hypertrophic cardiomyopathy.

Familial hypertrophic cardiomyopathy (FHC) is frequently associated with mutations in the beta-cardiac myosin heavy chain. Many of the implicated residues are located in highly conserved regions of the myosin II class, suggesting that these mutations may impair the basic functions of the molecular motor. To test this hypothesis, we have prepared recombinant smooth muscle heavy meromyosin with m...

متن کامل

How actin-myosin interactions differ with different isoforms of myosin.

The development of in vitro techniques for assaying the mechanical properties of individual actin-myosin interactions has provided investigators with a powerful tool to address questions about fundamental properties of the force-generating reactions that produce movement of cells or organelles within cells. These techniques are capable of measuring the force and/or displacement produced by the ...

متن کامل

Adaptation of cardiac myocyte contractile properties to exercise training.

Recent work suggests that chronic exercise induces alterations in the contractile properties of cardiac myocytes. These alterations include increased sensitivity to activation by Ca, changes in the force-length relationship, and increased power output. A recently observed shift in expression of myosin light chain 1 subunit isoforms induced by training may provide a molecular mechanism for these...

متن کامل

Fluorescence spectra of cardiac myosin and in vivo experiment: studies on daunorubicin-induced cardiotoxicity

Objective(s):The objective of this study was to investigate the interaction of daunorubicin (DNR) and cardiac myosin (CM) and the changes in mice hearts to exhibit DNR-induced cardiotoxicity . Materials and Methods:The interaction between DNR and CM was expressed using fluorescence quenching at pH 4.0-9.0 and 15-37 °C. DNR-induced cardiotoxicity was studied using in vivo experiment.  Forty grou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 82 10  شماره 

صفحات  -

تاریخ انتشار 1998